3.2.36 \(\int \frac {\sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{3/2}} \, dx\) [136]

Optimal. Leaf size=99 \[ \frac {a (A+B) \cos (e+f x)}{f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {a B \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

a*(A+B)*cos(f*x+e)/f/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2)+a*B*cos(f*x+e)*ln(1-sin(f*x+e))/c/f/(a+a*si
n(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.24, antiderivative size = 99, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {3050, 2816, 2746, 31, 2817} \begin {gather*} \frac {a (A+B) \cos (e+f x)}{f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}+\frac {a B \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + a*Sin[e + f*x]]*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(3/2),x]

[Out]

(a*(A + B)*Cos[e + f*x])/(f*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)) + (a*B*Cos[e + f*x]*Log[1 - S
in[e + f*x]])/(c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2746

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2816

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[a
*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2817

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 3050

Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[B/d, Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x
] - Dist[(B*c - A*d)/d, Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f
, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{3/2}} \, dx &=(A+B) \int \frac {\sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{3/2}} \, dx-\frac {B \int \frac {\sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx}{c}\\ &=\frac {a (A+B) \cos (e+f x)}{f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {(a B \cos (e+f x)) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)} \, dx}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {a (A+B) \cos (e+f x)}{f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {(a B \cos (e+f x)) \text {Subst}\left (\int \frac {1}{c+x} \, dx,x,-c \sin (e+f x)\right )}{c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {a (A+B) \cos (e+f x)}{f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {a B \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.67, size = 118, normalized size = 1.19 \begin {gather*} \frac {\sec (e+f x) \sqrt {a (1+\sin (e+f x))} \left (A+B-B \log \left (e^{i (e+f x)}\right )+2 B \log \left (-i+e^{i (e+f x)}\right )+B \left (\log \left (e^{i (e+f x)}\right )-2 \log \left (-i+e^{i (e+f x)}\right )\right ) \sin (e+f x)\right )}{c f \sqrt {c-c \sin (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + a*Sin[e + f*x]]*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(3/2),x]

[Out]

(Sec[e + f*x]*Sqrt[a*(1 + Sin[e + f*x])]*(A + B - B*Log[E^(I*(e + f*x))] + 2*B*Log[-I + E^(I*(e + f*x))] + B*(
Log[E^(I*(e + f*x))] - 2*Log[-I + E^(I*(e + f*x))])*Sin[e + f*x]))/(c*f*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(402\) vs. \(2(91)=182\).
time = 0.35, size = 403, normalized size = 4.07

method result size
default \(\frac {\left (-2 B \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right ) \left (\cos ^{2}\left (f x +e \right )\right )+2 B \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )+B \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right ) \left (\cos ^{2}\left (f x +e \right )\right )-B \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )+A \left (\cos ^{2}\left (f x +e \right )\right )-A \sin \left (f x +e \right ) \cos \left (f x +e \right )-2 B \cos \left (f x +e \right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-4 B \sin \left (f x +e \right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+B \left (\cos ^{2}\left (f x +e \right )\right )-B \sin \left (f x +e \right ) \cos \left (f x +e \right )+B \cos \left (f x +e \right ) \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )+2 B \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right ) \sin \left (f x +e \right )+A \sin \left (f x +e \right )+4 B \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+B \sin \left (f x +e \right )-2 B \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )-A -B \right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}{f \left (-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )\right ) \left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {3}{2}}}\) \(403\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(-2*B*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))*cos(f*x+e)^2+2*B*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e
))*sin(f*x+e)*cos(f*x+e)+B*ln(2/(1+cos(f*x+e)))*cos(f*x+e)^2-B*ln(2/(1+cos(f*x+e)))*sin(f*x+e)*cos(f*x+e)+A*co
s(f*x+e)^2-A*sin(f*x+e)*cos(f*x+e)-2*B*cos(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-4*B*sin(f*x+e)*ln
(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+B*cos(f*x+e)^2-B*sin(f*x+e)*cos(f*x+e)+B*cos(f*x+e)*ln(2/(1+cos(f*x+e
)))+2*B*ln(2/(1+cos(f*x+e)))*sin(f*x+e)+A*sin(f*x+e)+4*B*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+B*sin(f*x+
e)-2*B*ln(2/(1+cos(f*x+e)))-A-B)*(a*(1+sin(f*x+e)))^(1/2)/(-1+cos(f*x+e)-sin(f*x+e))/(-c*(sin(f*x+e)-1))^(3/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*sqrt(a*sin(f*x + e) + a)/(-c*sin(f*x + e) + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(-(B*sin(f*x + e) + A)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(c^2*cos(f*x + e)^2 + 2*c^2*
sin(f*x + e) - 2*c^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \left (A + B \sin {\left (e + f x \right )}\right )}{\left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))**(3/2),x)

[Out]

Integral(sqrt(a*(sin(e + f*x) + 1))*(A + B*sin(e + f*x))/(-c*(sin(e + f*x) - 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]
time = 0.48, size = 118, normalized size = 1.19 \begin {gather*} -\frac {{\left (4 \, B \sqrt {c} \log \left ({\left | \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + \frac {A \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + B \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}\right )} \sqrt {a}}{2 \, c^{2} f \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

-1/2*(4*B*sqrt(c)*log(abs(sin(-1/4*pi + 1/2*f*x + 1/2*e)))*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + (A*sqrt(c)*sg
n(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + B*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))/sin(-1/4*pi + 1/2*f*x + 1/2
*e)^2)*sqrt(a)/(c^2*f*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x))^(3/2),x)

[Out]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x))^(3/2), x)

________________________________________________________________________________________